Exam 2 Answers
NESA - Fall 2001

## Collaborative Section

1. The diglyceride is first hydrolyzed, producing two fatty acids, one of 14 carbons $\left(\mathrm{C}_{14}\right)$ and one with 12 carbons $\left(\mathrm{C}_{12}\right)$. The glycerol produced in this reaction could further be metabolized to pyruvate (this portion of the answer was not required), though it is more likely that it would be used in triacylglycerol synthesis. These fatty acids must be activated using an equivalent of 2 ATPs in the process before they enter $\beta$ oxidation. The products of this cycle are then processed in the citric acid cycle, the electron transport chain, and oxidative phosphorylation.
$\mathrm{C}_{14}$
$\beta$-oxidation - 6 cycles
7 Ac-SCoA
6 NADH
$6 \mathrm{FADH}_{2}$
Citric Acid Cycle (CAC)- Ac-SCoA processed (7 cycles)
21 NADH
$7 \mathrm{FADH}_{2}$
7 ATP
Electron Transport Chain and oxidative phosphorylation - All NADH and FADH ${ }_{2}$ oxidized

Total NADH: $6+21=27$
Total FADH $2: 6+7=13$
Ideal ( 3 ATP/NADH, 2 ATP/ $\mathrm{FADH}_{2}$ ) Empirical (2.5 ATP/NADH, 1.5 ATP/ FADH 2
$27 \cdot 3+13 \cdot 2=107$
From CAC: 7
Activation: -2
Total: 112
$\mathrm{C}_{12}$
$\beta$-oxidation - 5 cycles
6 Ac-SCoA
5 NADH
$5 \mathrm{FADH}_{2}$
Citric Acid Cycle (CAC)- Ac-SCoA processed (6 cycles)
18 NADH
$6 \mathrm{FADH}_{2}$
6 ATP
Electron Transport Chain and oxidative phosphorylation - All NADH and FADH ${ }_{2}$ oxidized

Total NADH: $5+18=23$
Total FADH $2: 6+5=11$

Ideal (3 ATP/NADH, 2 ATP/ $\mathrm{FADH}_{2}$ )
$23 \cdot 3+11 \cdot 2=91$ ATPs
From CAC: 6
Activation: -2
Total: 95

Total amount of ATP:
Ideal (3 ATP/NADH, 2 ATP/FADH 2 )
$\mathrm{C}_{14}$ : 112 ATPs
$\mathrm{C}_{12}$ : 95
Total: 207 ATPs

Empirical (2.5 ATP/NADH, 1.5 ATP/ FADH ${ }_{2}$ $23 \cdot 2.5+11 \cdot 1.5=80$ ATPs
6
-2

Empirical (2.5 ATP/NADH, 1.5 ATP/ FADH 2 92 ATPs
78
170 ATPs
2. Three glucose molecules are produced when raffinose is hydrolyzed. Each glucose is metabolized through Glycolysis, oxidative decarboxylation, the citric acid cycle, the electron transport chain, and oxidative phosphorylation.

Number for one glucose molecule:
Glycolysis -
Used: 2 ATPs
Produced:
4 ATPs
2 NADH
2 pyruvate
Oxidative decarboxylation
Used: 2 pyruvate
Produced:
2 NADH
$2 \mathrm{Ac}-\mathrm{SCoA}$
Citric Acid Cycle
Used: 2 Ac-SCoA
Produced:
6 NADH
$2 \mathrm{FADH}_{2}$
2 ATPs
Electron transport and oxidative phosphorylation.
TotalNADH: $2+2+6=10$
Total FADH 2 : 2
Ideal ( 3 ATP/NADH, 2 ATP/ $\mathrm{FADH}_{2}$ ) Empirical ( 2.5 ATP/NADH, 1.5 ATP/ FADH 2
$10 \cdot 3+2 \cdot 2=34$ ATPs $10 \cdot 2.5+2 \cdot 1.5=28$ ATPs
From Glycolysis: 4
Used in Glycolysis: - 2
4
From CAC: 2

- 2

Total/glucose: 38
2

Overall production: 114 ATPs
3. Cystine, reduction
4. All of the amino acids are both glucogenic and ketogenic. It is clear that Threonine is both glucogenic and ketogenic since it can eventually produce Ac-SCoA (used to synthesize fatty acids, triacylglycerols and possibly keytone bodies) and pyruvate (first reagent in the gluconeogensis chain). All of the other amino acids in the displayed pathway produce just pyruvate, making them glucogenic. Pyruvate can be converted to Ac-SCoA through oxidative decarboxylation. Thus the carbon atoms from these amino acids could find themselves within a fatty acid.

## Individual Section

$\begin{array}{lllllll}\text { 1. A } & \text { 2. } \mathrm{C} & \text { 3.D } & \text { 4.B } & \text { 5.C } & \text { 6.A } & \text { 7.D }\end{array}$
8. A

Fatty acids are synthesized from acetyl CoA, units of two carbon atoms. Palmitic acid has 16 carbon atoms, so it is synthesized form 8 acetyl CoA molecules. One Ac-CoA is produced from 1 pyruvate. Two pyruvate molecules are generated from the metabolism of 1 glucose molecule through glycolysis. Thus four glucose molecules would be needed to produce the Ac-CoA needed to synthesize palmitic acid. Since maltose is a disaccharide (two glucose molecules), 2 maltose molecules would be needed.
9. On the following page.


